

LA-UR-20-27543

Approved for public release; distribution is unlimited.

Title: Nuclear Criticality Safety Fundamentals

Author(s): McKenzie, George Espy IV

Intended for: Training

Issued: 2020-09-24

INSTRUCTOR
GEORDIE MCKENZIE
LANL

Nuclear Criticality Safety Fundamentals

Objectives

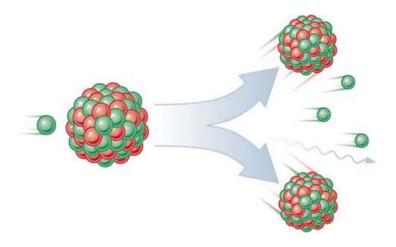
- 1. Explain the difference between radiation safety vs. criticality safety
- 2. Define criticality
- 3. Explain the three types of chain reactions
- 4. Define **two terms scientists use** to characterize criticality
- 5. Explain what occurs during a criticality accident
- 6. Identify prevention measures for avoiding a criticality accident
- 7. Identify the parameters that effect criticality of a system

Some Common Questions

- Will walking up on an IPC cause a criticality accident?
- How can I determine if the IPC is close to being critical?
- Will a criticality accident create yield like an IND?
- What are the impacts of normal Stabilization Team operations?
- What can I do to stay safe?

Radiological Safety

- Thousands of radioactive materials (isotopes)
 - Each is unstable and emits radiation $(\alpha, \beta, \gamma, n)$ at predictable levels
 - Damages human body at cellular level
- Radioactivity <u>cannot be altered</u> by physical properties or environment
 - Mass, volume, geometry, temperature, pressure
- Personnel protection is effective via simple rules
 - Time Distance Shielding

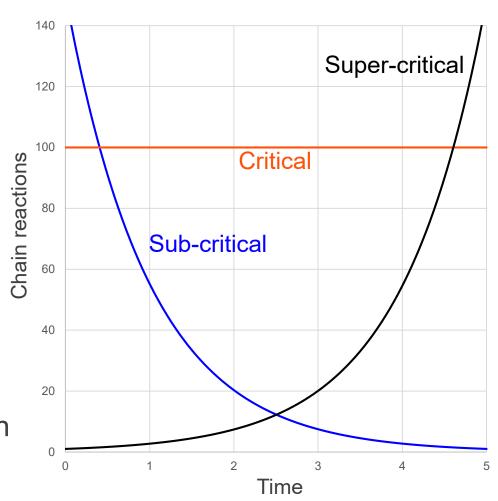

These controls and principles are <u>not</u> effective for Criticality Safety

Fission

- A subset of radioactive materials also "fission"
- Fission is NOT a radioactive decay process
 - Caused by particles striking the nucleus (i.e., a trigger)
- Fission releases new neutrons
 - Potential triggers
- Chain reactions can result
 - Large energy release, in the form of radiation, is possible
 - Life threatening to personnel and organisms nearby
- Fission can be altered by physical and environmental properties

Types of Chain Reactions

Sub-critical


- Self-extinguishing chain reaction
- Example: IPC, RTO

Critical

- Self-sustaining chain reaction
- Each fission leads to exactly one future fission
- Example: Nuclear reactor

Super-critical

- Self-promoting chain reaction
- Each fission leads to more than one future fission
- Example: Criticality accident, nuclear weapon

Words You May Hear Us Say

k-effective (k_{eff})

Neutron multiplication

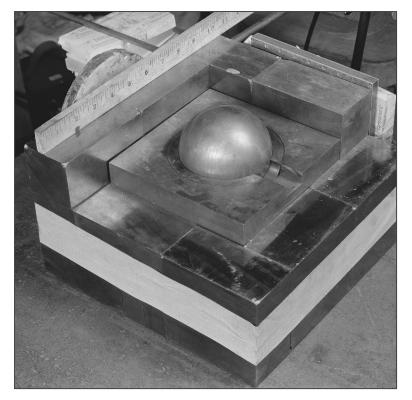
K-Effective – Effective Multiplication Factor

Three possible values for k_{eff}

- k_{eff} less than 1
 - System is subcritical, neutron population drops from generation to generation
- k_{eff} is 1
 - System is critical, neutron population is constant
- k_{eff} greater than 1
 - System is supercritical, neutron population grows with each generation

Neutron Multiplication

- Total number of neutrons that would be generated through fission from a single starter neutron
 - How the original starter neutron is "amplified" through the fission process



Chain Reactions

Ways to start self-sustaining chain reactions

- Mixing the fissionable materials with other materials
- Placing shielding nearby
- Collocating containers or items of fissionable material
- Altering the shape of the fissionable material unit

Plutonium sphere surrounded by neutronreflecting tungsten carbide blocks

Intended Criticality vs. Accident

Self-Sustaining Chain Reactions

Occur at a time and place of our choosing

Nuclear reactors
Critical assemblies
Nuclear Weapons

Self-Sustaining Chain Reactions

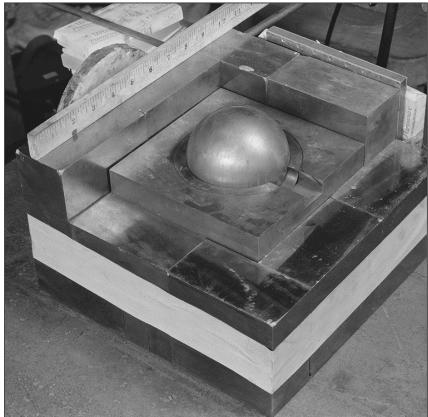
Occur during handling of fissionable materials

Criticality Accidents

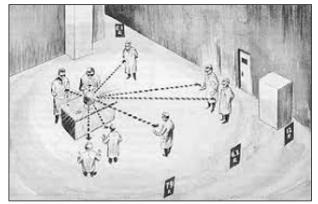
Demon Core Video

Fat Man Little Boy Movie (1989)

 $TitusFlavious 79-The\ Demon\ Core\ 1945-YouTube-Jul.\ 10,\ 2010-2:41-https://www.youtube.com/watch?v=hh89h8FxNhQ$



A Criticality Accident


Los Alamos – 1945

Consequences of Criticality Accidents

- Large energy release in the form of radiation
- Life threatening to personnel and organisms nearby
 - Significant effects within ~5 meters (~15 feet)
- Potential for public exposures or offsite workers
- Important note: Criticality accidents happen very quickly
 - Less than a second, typically milliseconds or microseconds for initial burst
 - No chance to make any changes or stop accident
 - Criticality Safety (i.e., avoiding criticality accidents) is important!

What is Criticality Safety?

Protection against the consequences of a criticality accident, preferably by <u>prevention</u> of the accident

- Limiting chance for self-sustaining chain reaction
- No different than any other safety discipline
 - Technical guidance from Home Team
 - Underlying principles can be complex and counter to rational judgment
 - Adding or removing water from fissionable material may both be unsafe
 - Effects of adding non-fissionable material are not always straightforward
 - · Behavior of fissionable material may change depending on its distribution and location

Who is Responsible for Criticality Safety?

- Mission space does not allow for full evaluations of every situation
 - No procedures
 - Expert guidance
- Home Team able to give criticality safety guidance
- Team Lead is responsible for safety of overall operation
- YOU
 - You're at the IPC
 - Your team relies on you to perform the correct actions

What Can You Do?

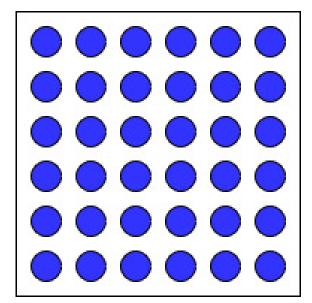
- Take criticality safety training
- Consider Criticality Safety before taking action
- Have a questioning attitude
- Participate in operational planning
 - There is always a way to accomplish our goals
 - Best practices:
 - Minimize people around IPC
 - Maximize distance when not actively "working"
- Ask questions of science staff
 - We are here for your benefit

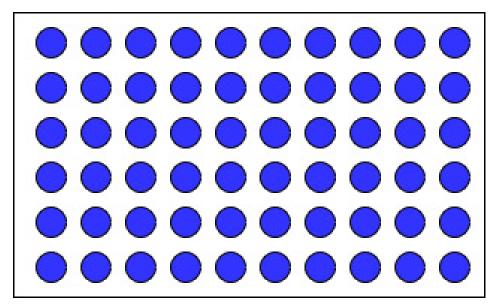
Criticality Safety Parameters

MAGIC MERV

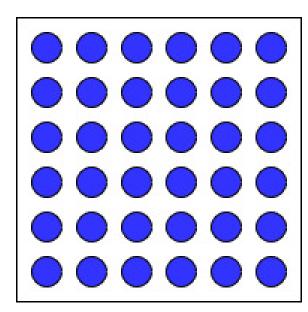
- Mass
- Absorption
- Geometry
- Interaction/Spacing
- Concentration
- Moderation
- Enrichment
- Reflection
- Volume

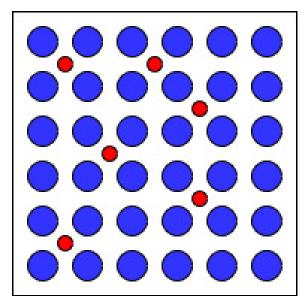
These parameters can have a large effect upon criticality of a system


- Some we can easily change some are harder to change
- Changing parameters can be complicated and non-intuitive!

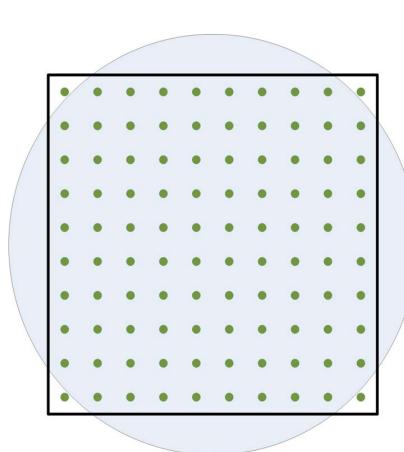


- Mass
- A
- **G**
- •
- C
- M
- E
- R
- V


More Critical

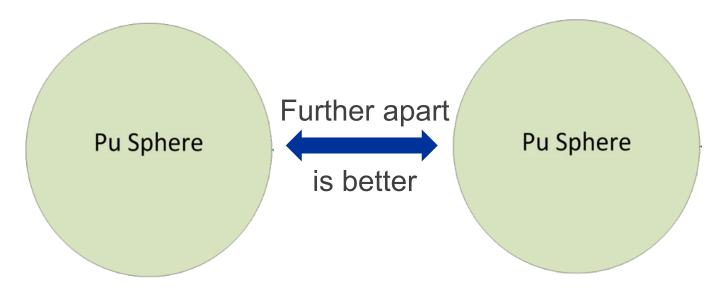


- M
- Absorption
- **G**
- •
- C
- M
- **E**
- R
- V


Red material absorbs neutrons and they don't fission (less critical)

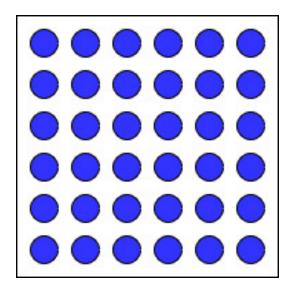
- M
- A
- Geometry
- •
- C
- M
- E
- R
- V

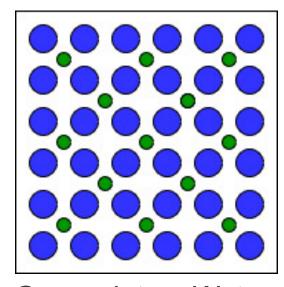
A sphere is more critical than a cube



- M
- A
- **G**
- Interaction/Spacing
- C
- M
- **E**
- R
- V

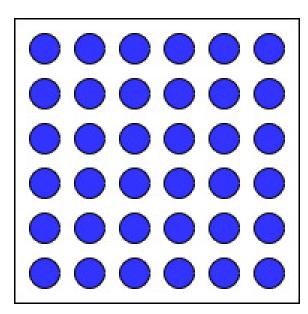
Distance matters!

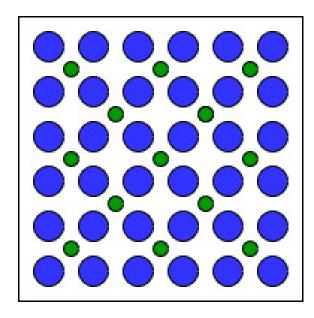




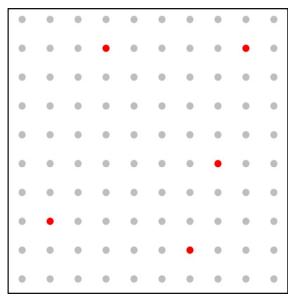
- M
- A
- **G**
- •
- Concentration
- M
- E
- R
- V

Solutions are a concern!

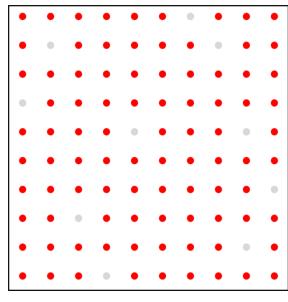



Green dots = Water (Example of Solution)

- M
- A
- **G**
- •
- C
- Moderation
- E
- R
- V

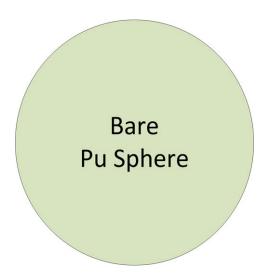

Green dots = Water (Example of Moderator)

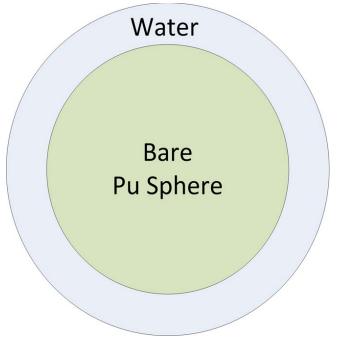
Slows down neutrons - more critical



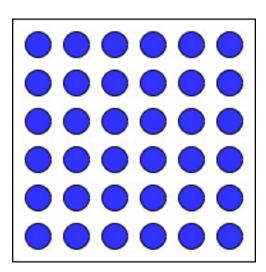
- M
- A
- **G**
- •
- C
- **V**
- Enrichment
- R
- V

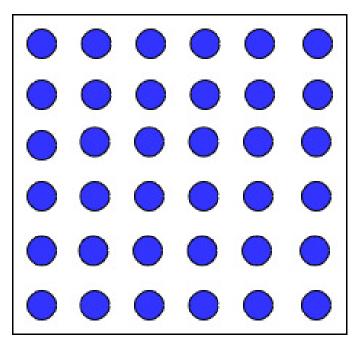
5% U-235


90% U-235 (More critical)



- M
- A
- **G**
- •
- C
- M
- E
- Reflection
- V


More critical



- M
- A
- **G**
- •
- C
- M
- E
- R
- Volume

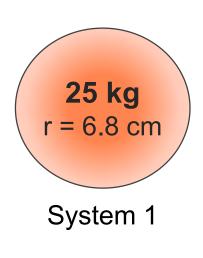
Less critical

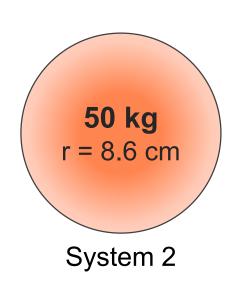
Which parameters are of most importance to Stabilization?

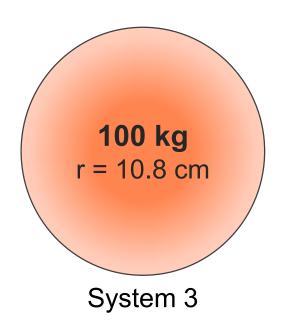
- Mass Amount of SNM in IPC
- Absorption Removal of some absorbing material near IPC
- Geometry Shape of SNM and IPC
- Interaction/Spacing Distance between multiple IPCs
- Concentration Amount of SNM in a solution
- Moderation Slowing neutrons down
- Enrichment Amount of the "good stuff"
- Reflection Addition of materials around IPC (including you and others)
- Volume How much space the SNM occupies

Critical Mass Comparison

Material	Metal System Mass (kg)	
	Bare	Water Reflected
Pu	10.2	5.8
HEU	50.0	25.0


The critical mass of a water reflected system is about ½ that of a bare system





Parameters and Chain Reactions

- Three different metal systems
 - Bare (no reflector)
 - **HEU** metal
 - Spherical geometry
- Subcritical, Critical, or Supercritical?

The Most Difficult Thing to Understand about Criticality

- No "Rule of Thumb" with respect to neutron count-rate
 - ORTEC gives no information
 - MC-15 only gives information once analyzed
- Some of the most dangerous systems with respect to criticality – have almost no neutron count-rate
- Neutron count rate
 - Combination of source strength x the multiplication
 - Criticality is concerned only with the multiplication

MC-15

Criticality Safety for Stabilization

- What tool(s) does STAB have to assess nuclear criticality?
 - MC-15 data can be used by Home Team to assess criticality
- To keep you safe, follow established operational guidance and consult with Home Team

Take-Aways

- Criticality safety can be complicated and non-intuitive
- Cannot stop an accident once it has started best to avoid an accident
 - Best Practices
 - Follow QRCs
 - Minimize people
 - Increase distance when not working
 - Use Your Resources
 - Home Team
 - MC-15

Do You Have Any Questions?

- Will walking up on an IPC cause a criticality accident?
- How can I determine if the IPC is close to being critical?
- Will a criticality accident create yield like an IND?
- What are the impacts of normal Stabilization Team operations?
- What can I do to stay safe?

